Process Hazard Analysis (PHA) - [Date] Submitted to: Prepared by: **Project Manager** #### **TABLE OF CONTENTS** | SEC | TION | PAGE | |-----|---|------| | 1.0 | PURPOSE AND SCOPE OF PROCESS H^AZARD ANALYSIS (PHA) | | | | | 2 | | 2.0 | OFF-SITE CONSEQUENCE ANALYSIS | 3 | | 3.0 | PHA METHODOLOGY | 3 | | 4.0 | HAZARD EVALUATION TEAM | 4 | | 5.0 | HAZOP RISK ANALYSIS MATRIX | 5 | | 6.0 | HAZOP STUDY | 6 | | 7.0 | HAZOP SUMMARY AND RECOMMENDATIONS | 22 | | | | | #### **LIST OF APPENDICES** APPENDIX A: HAZARD EVALUATION TEAM SIGN-IN SHEETS | [Date] | |--------| |--------| #### 1.0 PURPOSE AND SCOPE OF PROCESS HAZARD ANALYSIS (PHA) | The purpose of this project is to assist | in updating their production | cess hazard analysis (PHA) for | |---|------------------------------|---------------------------------------| | the entire facility. Future updates will combine | these two PHAs into | one for the entire facility. This PHA | | is required to be revalidated every five years as | specified in the Risk | Management Program (RMP) rules | | found in 40 CFR Part 68 and the Process Safety | Management (PSM) | rules found in 29 | | CFR 1910. | , | ٨ | The purpose of a PHA is to identify, evaluate, and control hazards in a process. The PHA must be appropriate to the complexity of the process and must be conducted in a priority order based on the hazard and potential consequences. The methodology used must be appropriate to determine and evaluate the hazards and must address the following: - Previous process hazard incidences with potential for catastrophic consequences; - Engineering and administrative controls, and consequences of their failure; - Stationary source siting; - Human factors; and, - Qualitative evaluation of a range of safety and health effects that may result from process failures. Use of one (or more) of the following methodologies is acceptable: - What-If; - Checklist; - What-If/ Checklist; - Hazard and Operability Study (HAZOP); - Failure Mode and Effects Analysis (FMEA); - Fault-Tree analysis; or, - An appropriate equivalent methodology. Note that PHAs must be revalidated every five years and any reports, updates, recertification, and documented resolutions must be retained for the life of the process. ### 2. OFF-SITE CONSEQUENCE ANALYSIS [Date] #### **OFF-SITE CONSEQUENCE ANALYSIS** Worse-case: | The worse case scenario is a vapor cloud explosion of the largest storage tank at | |---| | maximum capacity of propane. The largest tank onsite is gallons, and holds pounds of (based on Annex D of EPA's Risk Management Program and OSHA | | Process Safety Management: List of Regulated Substances). Using R^MP*Comp, the distance | | to 1 psi overpressure endpoint is miles from the site The quantity released is | | pounds, the entire contents of the tank. The wind speed assumed is 1.5 ^s, with a stability class of F | | and a temperature of 77C. The topography of the site is urban. No passive mitigation was | | considered. | | Using the LandView 5 program with 2010 Census data, the estimated population in a | | mile radius of the site is Public receptors within the radius include | | Alternative case #1: | | The alternative scenario considered is a vapor cloud explosion of propane caused by a release from a ruptured pipe. The amount of time assumed for the release is minutes. The flow rate is lb/min. The total release was estimated to be pounds. Using R^P*Comp, the distance to 1 psi overpressure endpoint is 0.1 miles from the site. | | Using the LandView 5 program with 2010 Census data, the estimated population in a | | mile radius of the site is Public receptors within the mile radius include | | Alternative case #2: | | The alternative scenario considered is a vapor cloud explosion of caused by a | | release from a ruptured pipe. The amount of time assumed for the release is minutes. The | | flow rate is lb/min. The total release was estimated to be pounds. Using | | R^P*Comp, the distance to 1 psi overpressure endpoint is miles from the site. | | Using the LandView 5 program with 2010 Census data, the estimated population in a | | mile radius of the site is 0. Public receptors within the mile radius include | | | #### 3.0 PHA METHODOLOGY Plaze utilized the Hazard and Operability Study (H^ZOP) for this PHA. The H^ZOP methodology utilizes a brainstorming approach where people knowledgeable and experienced in the facility's operations evaluate the process for potential release possibilities. For consistency and to maintain the integrity of ongoing compliance efforts at the Site, this PHA utilized the selection of "guidewords" and "nodes". EPA has listed twenty-eight (28) recommendations from previous studies of flammable release incidents. For a complete listing of these "guidewords", refer to EPA's website. "Nodes" are identified as separate portions of the batching process. It should be noted that the batching process-specific PHA is already addressed under a separate stand alone PHA and is consequently omitted from this entire system P^A. Future updates will combine these two PHAs into one for the entire facility. For the purposes of this PHA, following are the "nodes" addressed: - Entire System Buildings 1 & 2; - Storage Tanks; - Truck Unloading; - Propane Piping; and, - Gashouse. #### 4.0 HAZARD EVALUATION TEAM The HAZOP evaluation team consisted of the following personnel: - - Environmental Director Plaze, Inc.; - - Safety Director Plaze, Inc/ - - Operations Manager; and, - - Principal - The team went through the HAZOP on May 31,2013 at an offsite restaurant near te facility and, again on Jnne 28, 2013 and July 31,2013 at the same location. #### 5.0 HAZOP RISK ANALYSIS MATRIX | FREQUENCY CONSEQUENCE | A
(Frequent;
>IX yr) | B
(Periodical;
1+ times/
decade) | C
(Occasional -
likely to occur
during life of
plant) | not | E
(Very
unlikely) | |--|----------------------------|---|---|-----|-------------------------| | I
Catastrophic (death;
\$1MM property
damage) | 1 | 1 | 1 | 2 | 4 | | II Severe (multiple injuries; \$100K property damage) | 1 | 2 | 3 | 3 | 4 | | III
Moderate (single
injury; \$10K property
damage) | 2 | 3 | 4 | 4 | 4 | | IV
Slight
(operational only; no
injuries or damage) | 4 | 4 | 4 | 4 | 4 | #### **RISK CODES:** - 1 Critical; must be improved - 2 Undesirable; must be improved - 3 Acceptable; with controls - 4 Acceptable as is #### Process Hazard Analysis (PHA)- [Date] #### 6.0 HAZOP STUDY Following is the complete HHAZOP Study, presented by nodes as follows: - Entire System - Storage Tanks; - Truck Unloading; - Propane Piping; and, - Gashouse. | Process | Hazard | Analy | sis (| (PHA) | - | |----------------|--------|-------|-------|-------|----------| |----------------|--------|-------|-------|-------|----------| #### 7.0 HAZOP SUMMARY AND RECOMMENDATIONS Following is the HAZOP Summary, which includes a list of corrective actions required from the PHA. #### HAZOP SUMMARY AND RECOMMENDATIONS | Item# | Recommendation | Disposition/
Task
Assignment | Responsible/
Verifying
Person | Progress/
Status/
Comments | Sch.
Comp.
Date | Comp.
Date | |-------|----------------|------------------------------------|-------------------------------------|----------------------------------|-----------------------|---------------| 1 | | | | | | | # APPENDIX A: HAZARD EVALUATION TEAM SIGN-IN SHEETS #### PROCESS HAZARDS ANALYSIS (PHA) TEAM MEETING | | DATE: | |------------------------------|---| | | | | | | | | | | TEAM MEMBER NAME (SIGNATURE) | TEAM MEMBER NAME
(PRINTED) ROLE/ TITLE | | | | #### PROCESS HAZARDS ANALYSIS (PHA) TEAM MEETING #### DATE: | TEAM MEMBER NAME (SIGNATURE) | TEAM MEMBER NAME
(PRINTED) | ROLE/ TITLE | |------------------------------|-------------------------------|-------------| | | | | | | | | | J 1 | | | | V V | | | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | Risk
Rank | | | | | | | Existing
Controls | Recommendation | | Risk
Rank | | |------|------------------|--|--------|----------------------------------|----------------|-----|------|--|--|---|---|----------------------|----------------|--|--------------|--| | | Ttem | <u> </u> | | | F | С | R | | | F | С | R | | | | | | | | | ENTIRE | SYSTEM - | BLI | ogs | S. 1 | & 2 | | | | | | | | | | 1.1 | ENTIRE
SYSTEM | Establish training programs to ensure that the propane system is operated and maintained by Knowledgeable personnel | | Personnel wouldn't be trained | ^t D | I | 2 | New tracking; initially plus every three years | |
| | | | | | | | 1.2 | ENTIRE
SYSTEM | Develop and require propane maintenance personnel to follow written, standard procedures for maintaining the system. In-house checklists are used to guide maintenance personnel while they execute these procedures. | | Equipment
failure | С | П | 3 | Daily checklist; tanks checked three times | | | | | | | | | | 1.3 | ENTIRE
SYSTEM | Provide barriers to protect propane equipment, i.e, lines, valves, and piping, from impact. | | Vehicle could hit tank or piping | 0 | - | 2 | Chain link fence in-place | Evaluate need for ballards around key access to tanks & piping | | | | | | | | | 1.4 | ENTIRE
SYSTEM | Develop and maintain a written preventive maintenance program and schedule based on the manufacturers recommendations for all of the propane equipment. The preventative maintenance program should include, but not be limited to: a) pumps b) contra! valves c) LEL meter 1) Yellow level at 20% secondary exhausts on 2) Red level - everything is shut off d) emergency response equipment, Including: 1) air monitoring equipment 2) level B suits 3) air-purifying respirators. | | Equipment failure
or release | D | ı | 2 | PSM in-place and being revised and updated | | | | | | | | | | 1.5 | ENTIRE
SYSTEM | Maintain a leak-free propane system.
Investigate all reports of a release and
repair all leaks immediately. | | Unnoticed release | С | I | 1 | Visual verification | | | | | | | | | | 1.6 | ENTIRE
SYSTEM | Keep an accurate record of the amount of propane that Is purchased and the amount that Is used. | | Overfill tank | D | Ш | 3 | Daily (three times) and monthly
volumes checked. Admin procedure
at 85% capacity | | | | | | | | | | Item | Equip./ | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | | | | | | | Existing
Controls | Recommendation | | Ris
Rai | | |--------|---------------------------------------|--|-------------------|---|-----|--------------|---|---|---|---|---|---|--|----------------------|----------------|--|------------|--| | | i i i i i i i i i i i i i i i i i i i | Deviation | | | F | С | R | | | F | С | R | | | | | | | | 1.7 | ENTIRE
SYSTEM | Ensure that good housekeeping procedures are followed. | Poor housekeeping | Debris in system | D | IV | 4 | Daily walk-through | | | | | | | | | | | | 1.8 | ENTIRE
SYSTEM | Ensures that propane system lines and valves are adequately identified (e.g., by color coding or labeling) by using an inhouse system. | | Blending of wrong
gases | D | m | 4 | Bulkhead, tanks and piping labeled | | | | | | | | | | | | 1.9 | ENTIRE
SYSTEM | Properly post propane placards and warning signs in areas where propane is being used or being stored. | | Ignition source too
dose | D | I | 2 | Warning signs and placards posted on tanks and fence | | | | | | | | | | | | 1.10 | ENTIRE
SYSTEM | Periodically inspect all propane piping for rust and corrosion. Replace all deteriorated piping as needed. Protect all un-insulated piping from rust and/or corrosion by cleaning, priming, and painting with an appropriate coating. | | Piping failure | E | m | 4 | Part of monthly audit. Cleaned and painted every other year. | | | | | | | | | | | | 1.11 | ENTIRE
SYSTEM | Carry out regular inspections of
emergency equipment and keep
respirators, including air-purifying and
other equipment in good shape; for air-
purifying respirators, replace cartridges as
need and check expiration dates. | | Injury | С | i | 1 | Inspection procedure for emergency equipment | | | | | | | | | | | | 1.11.1 | ENTIRE
SYSTEM | Ensure that personnel are trained in proper use of emergency equipment | | Injury | E | i | 4 | Training | | | | | | | | | | | | 1.12 | ENTIRE
SYSTEM | Identify the main shutoff valve and other emergency isolation valves with a large placard so they can be easily identified by emergency responders, in case of an emergency. These valves should be dearly indicated on the piping and instrumentation diagram (P&IDs) and/or process flow diagrams. | | Unable to
stop/contro!
release | E | i | 4 | Shutoffs and valves ID'd and redundant (air, manual, and thermal) | | | | | | | | | | | | 1.13 | ENTIRE
SYSTEM | Establish emergency shutdown procedures and instructions on what to do during and after a power failure. | | Propane
solenoids, motors
and pumps wil
immediately shu
down in event o
power outage | t t | m | 3 | Develop SOP for re-start | Evaluate power shutoff requiring
manual re-start | | | | | | | | | | | 1.14 | ENTIRE
SYSTEM | Establish written emergency procedures and instructions on what to do in the event of a propane release. | | Injury | D | i | 2 | ERP In-place | | | | | | | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | Risk
Ran | | |------|------------------|---|---|---|---|--------------|---|---|----------------|---|-------------|---| | | Ttem | Deviation | | | F | С | R | | | F | С | R | | 1.15 | ENTIRE
SYSTEM | Regularly conduct emergency response drills. Members of the hazmat team should regularly participate to sharpen their emergency response skills. | | Injury | D | I | 2 | Annual Drills | | | | | | 1.16 | ENTIRE
SYSTEM | Keep piping and instrumentation
diagrams (P&IDs), process flow
diagrams, ladder diagrams, or single lines
up-to-date and Incorporate them into
training programs for operators. | | Unable to identify key control points | D | I | 2 | Drawings are current | | | | | | 2.1 | ENTIRE
SYSTEM | EARTHQUAKE | | Release | D | I | 2 | Shear w/excess flow valves built-in | | | | | | 2.2 | ENTIRE
SYSTEM | FLOODS | | Release | D | I | 2 | Shear w/excess flow valves built-in | | | | | | 2.3 | ENTIRE
SYSTEM | HIGH WINDS/ TORNADOS | | Release | D | ı | 2 | Shear w/excess flow valves built-in | | | | | | 2.4 | ENTIRE
SYSTEM | LOSS OF ELECTRICITY | | Pumps, motors,
and solenoids
shutdown | В | m | 3 | N/A | | | | | | 2.5 | ENTIRE
SYSTEM | LOSS OF UTILITY WATER | | Loss of fire protection | E | i | 4 | N/A | | | | | | 2.6 | ENTIRE
SYSTEM | PROPANE CLOUD | | Injury and damage | E | i | 4 | Redundant controls | | | | | | 2.7 | ENTIRE
SYSTEM | FIRE | | Injury and damage | E | i | 4 | Redundant controls | | | | | | 2.8 | ENTIRE
SYSTEM | LOSS OF PHONE SERVICE | | Unable to contact responders | D | n | 3 | None | | | | | | 3.1 | ENTIRE
SYSTEM | Instruments out of calibration | | Overfill or release | D | i | 2 | Dally readings; gas alarms; monthly inspections | | | | | | 3.2 | ENTIRE
SYSTEM | Worker standing on unsupported piping or small, weak propane line | Human error | Broken piping | D | m | 4 | Line supports in place and crossovers | | | | | | 3.3 | ENTIRE
SYSTEM | Pipe fittings and equipment connections not tight enough when installed | Human error;
improperly sized
connections | Release | E | IV | 4 | Leak checks performed on installation | | | | | | 3.4 | ENTIRE
SYSTEM | Operator turned wrong valve during startup or other operation | Human error | Release or contamination | D | IV | 4 | Training and signage | | | | 1 | | 3.5 | ENTIRE
SYSTEM | Falling ladder or other heavy equipment strikes and breaks propane piping | Human error | Release | E | m | 4 | Line supports in-place for piping | | | Ī | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | Risk
Rank | | |------|------------------|---|---|------------------------------------|---|--------------|---|--|----------------------|---|--------------|---| | | | 201880 | | | F | С | R | | | F | C F | 2 | | 3.6 | ENTIRE
SYSTEM | Overfill of propane storage equipment | Human error | Release | D | I | 2 | Admin SOPs, gauges. | Add gas alarms (MSA) | | | | | 3.7 | ENTIRE
SYSTEM | Propane trapped between closed block valves | | Line Failure | E | IV | 4 | Hydrostatic relief valves | | | | | | 3.8 | ENTIRE
SYSTEM | Employee injury from not wearing approved safety equipment | Human error | Injury | D | m | 4 | Training and appropriate PPE | | | | | | 3.9 | ENTIRE
SYSTEM | Delivery vehide driver drives off with the loading hoses still connected | Human error | Damage or release | D | m | 4 | Shear valves; breakaways in bulkhead; training requirements | | | | | | 3.10 | ENTIRE
SYSTEM | Piping downstream downsized making excess flow valves ineffective | Human error;
improperly sized DiDinq | Release | E | i | 4 | Standard size piping used
throughout system | | | | | | 3.11 | ENTIRE
SYSTEM | Tools, maintenance spares or other storage items prevents proper access to propane containing equipment | Poor housekeeping | Unable to access equip | E | IV | 4 | Good housekeeping practices | | | | | | 3.12 | ENTIRE
SYSTEM | Control or shutdown
valves in hard or impossible places to access | Poor equipment design | Slow response to
shut off equip | D | IV | 4 | Primary emergency shutdowns are easily accessible | | | | | | 3.13 | ENTIRE
SYSTEM | Maintenance man "opens" a propane line
under pressure | Human error | Release | D | m | 4 | Training and redundant shut off valves | | | | | | 4.1 | ENTIRE
SYSTEM | ACCESSIBILITY / AVAILABILITY OF CONTROLS, EQUIPMENT | | | | N/A | | Inspection procedure for emergency
equipment, Training and appropriate
PPE, Primary emergency shutdowns
are easily accessible | | | | | | 4.2 | ENTIRE
SYSTEM | WORKLOAD AND STRESS | | Injury | D | m | 4 | Scheduled breaks, extra breaks during excessive heat/cold | | | | | | 4.3 | ENTIRE
SYSTEM | COMPONENT LABELING | | | | N/A | 1 | Warning signs and placards posted
on tanks and fence, Shutoffs and
valves ID'd and redundant (air,
manual, and thermal) | | | | | | 4.4 | ENTIRE
SYSTEM | PROCEDURES | Human error or not '
trained | Injury or release | D | i | 2 | SOPs and training | | | | | | 4.5 | ENTIRE
SYSTEM | SABOTAGE THREAT | | Injury or release | E | i | 4 | Chain link fence around tanks -
valves and gashouse locked during
off hours - dusk to dawn tights | | | | | | 4.6 | ENTIRE
SYSTEM | SAFETY SHOWER, EYE WASH | Networking
properly | Greater risk of
injury | D | IV | 4 | Safety shower & eye wash stations in place | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Ran | | Existing
Controls | Recommendation | | Risk
Rank | | |------|------------------|------------------------------|-------|------------------|------|-------------|-----|--|----------------|---|--------------|---| | | rtem | Deviation | | | F | С | R | | | F | C R | | | 4.7 | ENTIRE
SYSTEM | OSHA MANDATED SAFETY | | Injury | D | 1 | 1 3 | PSM in-place and being updated -
annual training | | | | _ | | 4.8 | ENTIRE
SYSTEM | SECURITY | | | | N/ | Ą | Chain link fence around tanks -
valves and gashouse locked during
off hours - dusk to dawn lights | | | | | | 5.1 | ENTIRE
SYSTEM | FACILITY LAYOUT | | Injury and damag | ge E | | 4 | Gashouse piping and tanks designed to meet NFPA standards | | | | | | 5.2 | ENTIRE
SYSTEM | PIPING | | | | N/ | A | Bulkhead, tanks and piping labeled,
Part of monthly audit Cleaned and
painted every other year, All
drawings being currently updated,
Line supports in-place for piping,
Gashouse piping and tanks
designed to meet NFPA standards | | | | | | 5.3 | ENTIRE
SYSTEM | SYSTEM LAYOUT | | | | N/ | Ą | Bulkhead, tanks and piping labeled,
Part of monthly audit Cleaned and
painted every other year, AD
drawings being currently updated,
Line supports in-place for piping,
Gashouse piping and tanks
designed to meet NFPA standards | | | | | | 5.4 | ENTIRE
SYSTEM | PIPING LAYOUT | | | | N/ | Ą | Bulkhead, tanks and piping labeled,
Part of monthly audit Cleaned and
painted every other year, AO
drawings being currently updated,
Line supports in-place for piping,
Gashouse piping and tanks
designed to meet NFPA standards | | | | | | 5.5 | ENTIRE
SYSTEM | EQUIPMENT ARRANGEMENT LAYOUT | | | | N/ | A | Bulkhead, tanks and piping labeled,
Part of monthly audit Cleaned and
painted every other year, AO
drawings being currently updated,
Line supports in-place for piping,
Gashouse piping and tanks
designed to meet NFPA standards | | | | | | 5.6 | ENTIRE
SYSTEM | STORAGE | | | | N/ | Ą | Inspection procedure for emergency
equipment Good housekeeping
practices, Gashouse piping and
tanks designed to meet NFPA
standards | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | F | Ris
Rar | | Existing
Controls | Recommendation | F | Risk
Rank | ! | | | | | | 5 | | | | | | | | | | S.7 | ENTIRE
SYSTEM | LOCATION OF PEOPLE | | Injury | E | 1 | 4 | RMP/PSM in-place and being updated | | | | | |-------|------------------|---------------------------------------|------------------------------|-----------------------------|-----|--------------|---|--|--|---|-------------|---| | 5.8 | ENTIRE
SYSTEM | OTHER BUILDING LOCATIONS | | | | N/A | | Gashouse piping and tanks designed to meet NFPA standards | | | | | | 5.9 | ENTIRE
SYSTEM | EMERGENCY STATIONS AND ASSEMBLY AREAS | | Injury | D | 1 | 2 | Emergency Response Plan (ERP) and training. | | | | | | 5.10 | ENTIRE
SYSTEM | EMERGENCY EQUIPMENT LOCATION | | | | N/A | | Inspection procedure for
emergency equipment, Annual
Drills, appropriate PPE, Emergency
Response Plan (ERP) and tralning | | | | | | 5.11 | ENTIRE
SYSTEM | FIREFIGHTING CAPABILITIES | | Fire | D | ı | 2 | Portable extinguisher Inspection
procedure for emergency
equipment, Annual Drills,
appropriate PPE, Emergency
Response Plan (ERP) and training | Fire suppression in Gashouses 1 & 2 will be accomplished over next 3 years as Gashouses are replaced | | | | | 5.12 | ENTIRE
SYSTEM | SIGNAGE | | | | N/A | | Bulkhead, tanks and piping labeled,
Warning signs and placards posted
on tanks and fence, Shutoffs and
valves iD'd and redundant (air,
manual, and thenri3l) | | | | | | 5.13 | ENTIRE
SYSTEM | LIGHTING | | Theft or sabotage or injury | E | IV | 4 | Dust-to-dawn lighting in place | | | | | | | | | : | STORAGE | ΓΑΝ | IKS | | | | | | | | 6.1 | Storage Tanks | NO FLOW/ LESS FLOW | Excess flow valve shut | Operational only | E | IV | 4 | Daily inspections or operation slowdown | Install MSAs in tank farm | | | | | 6.1.1 | Storage Tanks | NO FLOW/ LESS FLOW | Pump failure | Injury and/ or release | С | III | 4 | Daily inspections or operation slowdown | MSAs in tank farm | | | | | 6.1.2 | Storage Tanks | NO FLOW/ LESS FLOW | Downstream valve dosed | Operational only | E | IV | 4 | None | | | | | | 6.1.3 | Storage Tanks | NO FLOW/ LESS FLOW | Backcheck valve stuck closed | Operational only | E | IV | 4 | Maintenance Inspections | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | isk
Pank | | | | | 25 | | | F | С | R | | | F | 2 | R | | 6.2 | Storage Tanks | REVERSE FLOW | Backcheck valve stuck open | Release | E | IV | 4 | Maintenance inspections | | | | | |---------|-----------------|-------------------------|---------------------------------------|---------------------------|---|--------------|---|---|----------------|---|--------------|---| | 6.3 | Storage Tanks | MORE FLOW | Excess flow valve failed | Release | D | I | 2 | Daily Inspections | | | | | | 6.3.1 | Storage Tanks | MORE FLOW | Pipe break | Release | Ε | ı | 4 | Daily Inspections | | | | | | 6.3.2 | Storage Tanks | MORE FLOW | Pump pressure set too high | Release | В | IV | 4 | SOP-Daily start-up | | | | | | 6.4 | Storage Tanks | TANK RUPTURE | Vehicle impact | Fire/ explosion | D | I | 2 | Chain link fence 8i ballards inplace | | | | | | 6.4.1 | Storage Tanks | TANK RUPTURE | Fire | Explosion | E | I | 4 | Hydrostats would bleed off portion of gas; internal excess flow valve @ bottom of tank would dose | | | | | | 6.4.2 | Storage Tanks | TANK RUPTURE | Sabotage | Release | E | IV | 4 | Chain link fence around tanks -
valves and gashouse locked during
off hours - dusk to dawn lights | | | | | | 6.5 | Storage Tanks | MORE TEMPURATURE | Overfilling tank | Release | D | ı | 2 | Fill gauges; SOPs; Pressure Relief
Valves | | | | | | 6.6 | Storage Tanks | CONTAMINATION | Debris in line | Valve/ Fitting
Failure | D | ı | 2 | Filter screens and Y-strainer in bulkhead | | | | | | 6.6.1 | Storage Tanks | CONTAMINATION | Wrong material in tank | Operational | С | IV | 4 | Labels; placards; training 8i SOPs | | | | | | 6.7 | Storage Tanks | RELIEF VALVE FAILURE | Debris in line | Valve/ Fitting
Failure | D | I | 2 | Filter screens and Y-strainer in bulkhead | | | | | | 6.7.1 | Storage Tanks | RELIEF VALVE FAILURE | Valve stuck open | Release | D | I | 2 | Daily Inspections | | | | | | 6.7.2 | Storage T^nks | RELIEF VALVE FAILURE | Valve stuck dosed | Release | D | I | 2 | Daily Inspections | | | | | | 6.8 | Storage Tanks | INSTRUMENTATION | Fill gauges working improperly | Release | D | ı | 2 | Daily Inspections; Monthly Complete
System Inspections | | | | | | 6.8.1 . | Storage Tanks | INSTRUMENTATION | Temperature gauges working improperly | Release | D | I | 2 | Daily Inspections; Monthly Complete
System Inspections | | | | | | 6.8.2 | Storage Tanks | INSTRUMENTATION | Pressure gauges
working improperly | Release | D | I | 2 | Daily Inspections; Monthly Complete
System Inspections | | | | | | 6.9 | Storage Tanks | CORROSION/
EROSION | Tank and/ or piping not maintained | Release | E | IV | 4 | Daily Inspections; Monthly Complete
System Inspections; SOPs | | | | | | 6.10 | Storage Tanks | IGNITION | Sparks from vehicle | Fire/ explosion | E | I | 4 | Chain link fence 8i road barricaded when unloading | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | Risk
Rank | | | | | | | | F | С | R | | | F | C . | ĸ | | 6.10.1 | Storage Tanks | IGNITION | Sparks from static discharge | Fire/ explosion | D | 1 | 2 | Training; Grounding; SOPs | |
 | | |--------|--------------------|-------------------------|---|--------------------------------------|----|--------------|----|--|---|----------|--------------|---| | 6.10.2 | Storage Tanks | IGNITION | Electrical sparks | Fire/ explosion | D | ı | 2 | Training; Grounding; SOPs; and PSM | | | | | | 6.10.3 | Storage Tanks | IGNITION | Sparks from use of improper tools | Fire/ explosion | D | ı | 2 | Training; Grounding; SOPs; and 'PSM | | | | | | 6.11 | Storage Tanks | UNPLANNED SHUTDOWN | Weather-related or power outage | Release or
shutdown of
system | D | I | 2 | Tank valves are shut off at end of
each shift; Develop SOP for re-
start, Shear w/excess flow valves
built-in | Evaluate power shutoff requiring manual re-start. | | | | | 6.12 | Storage Tanks | HUMAN FACTORS | Sparks from static electricity | Fire/ explosion | D | ı | 2 | Training; Grounding; SOPs | | | | | | 6.13 | Storage Tanks | SIGNAGE | Incorrect labeling of tanks | | D | ı | 2 | Bulkhead, tanks and piping labeled,
Warning signs and placards posted
on tanks and fence | | | | | | | | | ٦ | TRUCK UNL | OA | DII | NG | i | | | | | | 7.1 | Truck
Unloading | NO FLOW | Valves dosed on bulk head | Operational | E | IV | 4 | Monitoring flow gauges | | | | | | 7.1.1 | Truck
Unloading | NO FLOW | Release from tanker or hoses | Release | С | m | 4 | Emergency Stop Button and Excess flow valves | | | | | | 7.2 | Truck
Unloading | REVERSE FLOW | Valves closed on bulk head | Operational | E | IV | 4 | Monitoring flow gauges | | | | | | 7.2.1 | Truck
Unloading | REVERSE FLOW | Release from tanker or hoses | Release | С | m | 4 | Emergency Stop Button and Excess flow valves | | | | | | 7.3 | Truck
Unloading | MORE PRESSURE | Valves in improper position | Release | С | in | 4 | Daily Inspections, SOPs | | | | | | 7.3.1 | Truck
Unloading | MORE PRESSURE | Hose dogged | Release | С | НІ | 4 | Emergency Stop Button | | | | | | 7.3.2 | Truck
Unloading | MORE PRESSURE | Bulk head fittings clogged | Operational | | N/A | | N/A | | | | | | 7.3.3 | Truck
Unloading | MORE PRESSURE | Backcheck on tanker
could be clogged/
dosed | Bulk tanks could
over- pressurizt | С | HI | 4 | Emergency relief vents would engage | | | | | | 7.4 | Truck
Unloading | LESS PRESSURE | Valves closed on bulk head | Operational | E | IV | 4 | Monitoring flow gauges | | | | | | | • | | | 7 | | | | | | <u>ئ</u> | • | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | Risk
Rank | | | | 1011 | 25 Marion | | | F | С | R | | | F | С | R | | 7.4.1 | Truck
Unloading | LESS PRESSURE | Release from tanker or hoses | Release | С | m | 4 | Emergency Stop Button and Excess flow valves | | | | | |--------|--------------------|-------------------------|---|---------------------------|---|--------------|---|---|----------------|---|------------|--| | 7.S | Truck
Unloading | MORE TEMPURATURE | Excessive ambient
temperature for
extended period | Fire/ explosion | D | i | 2 | Redundant controls, Portable
extinguisher and fire suppression,
Inspection procedure for emergency
equipment, Annual Drills,
appropriate PPE, Emergency
Response Plan (ERP) and training | | | | | | 7.5.1 | Truck
Unloading | MORE TEMPURATURE | Fire | Fire/ explosion | D | i | 2 | \Redundant controls, Portable extinguisher and fire suppression, Inspection procedure for emergency equipment, Annual Drills, appropriate PPE, Emergency Response Plan (ERP) and tralning | | | | | | 7.6 | Truck
Unloading | LESS TEMPURATURE | Low ambient
temperature for
extended period | Operational | | N/A | | Daily checklist; tanks checked three
times, PSM in-place and being
revised and updated | | | | | | 7.6.1 | Truck
Unloading | LESS TEMPURATURE | Unprimed pump | Operational | | N/A | | Daily checklist; tanks checked three
times, PSM in-place and being
revised and updated | | | | | | 7.8 | Truck
Unloading | UNLOADING OPERATION | Premature disconnect from truck | Release | D | i | 2 | Emergency Stop Button and Excess flow valves | | | | | | 7.8.1 | Truck
Unloading | UNLOADING OPERATION | Hose leak | Release | С | i | 1 | Emergency Stop Button and Excess flow valves | | | | | | 7.8.2 | Truck
Unloading | UNLOADING OPERATION | Bad fit between couplings | Release | С | m | 4 | Emergency Stop Button | | | | | | 7.8.3 | Truck
Unloading | UNLOADING OPERATION | Improper hook-up | Release | D | m | 4 | Emergency Stop Button | | | | | | 7.8.4 | Truck
Unloading | UNLOADING OPERATION | Improper tools | Fire/ explosion | D | i | 2 | Training; Grounding; SOPs; and PSM | | | | | | 7.9 | Truck
Unloading | CONTAMINATION | Debris in line | Valve/ Fitting
Failure | D | i | 2 | Filter screens and Y-strainer in bulkhead | | | | | | 7.9.1 | Truck
Unloading | CONTAMINATION | Wrong material in tank | Operational | | N/A | | Labels; placards; training & SOPs | | | | | | 7.10 | Truck
Unloading | INSTRUMENTATION | Bad level gauge | Release | С | m | 4 | Dally readings; gas alarms; Daily
Inspections; Monthly Complete
System Inspections | | | | | | 7.10.1 | Truck
Unloading | INSTRUMENTATION | Bad temp and/ or pressure gauges | Release | С | m | 4 | Daily readings; gas alarms; Daily
Inspections; Monthly Complete
System Inspections | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | isk
ank | | | | | | | | F | С | R | | | F | C R | | | 7.11 | Truck | CORROSION/ | | | 1 | | 1 | ı | | | |--------|--------------------|-----------------|---------------------------------------|---------------------------------------|---|----|---|---|--|--------| | | Unloading | EROSION | Tank and/ or piping not
maintained | Release | E | m | 4 | Part of monthly audit Cleaned and
painted every other year, Daily
Inspections; Monthly Complete
System Inspections; SOPs | | | | 7.12 | Truck
Unloading | SERVICE FAILURE | Overflow of tank | Release | D | U | 3 | Admin SOPs, gauges; gas alarms in place | | | | 7.13 | Truck
Unloading | IGNITION | Sparks from vehicle | Fire/ explosion | E | ı | 4 | Chain link fence & road barricaded when unloading | | | | 7.13.1 | Truck
Unloading | IGNITION | Sparks from static discharge | Fire/ explosion | D | I | 2 | Training; Grounding; SOPs | | | | 7.13.2 | Truck
Unloading | IGNITION | Electrical sparks | Fire/ explosion | D | I | 2 | Training; Grounding; SOPs; and PSM | | | | 7.14 | Truck
Unloading | STARTUP | Premature disconnect from truck | Release | D | ı | 2 | Shear valves; breakaways in bulkhead; training requirements | | | | 7.14.1 | Truck
Unloading | STARTUP | Hose leak | Release | С | in | 4 | Emergency Stop Button and Excess
flow valves | | | | 7.14.2 | Truck
Unloading | STARTUP | Bad fit between couplings | Release | С | m | 4 | Emergency Stop Button | | | | 7.14.3 | Truck
Unloading | STARTUP | Improper hook-up | Release | С | m | 4 | Emergency Stop Button | | | | 7.14.4 | Truck
Unloading | STARTUP | Improper tools | Fire/ explosion | D | i | 2 | Training; Grounding; SOPs; and PSM | | | | 7.15 | Truck
Unloading | SHUTDOWN | Premature disconnect from truck | Release | D | i | 2 | Shear valves; breakaways in bulkhead; training requirements | | | | 7.16 | Truck
Unloading | SHUTDOWN | Hose leak | Release | С | m | 4 | Emergency Stop Button and Excess flow valves | | | | 7.16.1 | Truck
Unloading | SHUTDOWN | Bad fit between couplings | Release | С | m | 4 | Emergency Stop Button | | | | 7.16.2 | Truck
Unloading | SHUTDOWN | Improper hook-up | Release | С | m | 4 | Emergency Stop Button | | | | 7.17 | Truck
Unloading | HUMAN FACTORS | Sparks from static discharge | Fire/ explosion | D | i | 2 | Training; Grounding; SOPs | | \top | | 7.17.1 | Truck
Unloading | HUMAN FACTORS | Electrical sparks | Fire/ explosion | D | i | 2 | Training; Grounding; SOPs; and PSM | | | | 7.17.2 | Truck
Unloading | HUMAN FACTORS | Driver error | Premature
disconnect from
truck | D | i | 2 | Shear valves; breakaways In bulkhead; training requirements | | | | 7.17.4 | Truck
Unloading | HUMAN FACTORS | Improper tools | Fire/ explosion | D | i | 2 | Training; Grounding; SOPs; and PSM | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | Risk
Rank | Existing
Controls | Recommendation | Ris
Ran | k
ık | |------|-----------------|-------------------------|-------|-------------|--------------|----------------------|----------------|------------|---------| | | | | | | F CR | | | F C | R | | 7 4 7 5 | | LULIAAN FACTORS | | | _ | | | |
 | | |---------|------------------------------|---------------------|---------------------------------------|------------------------------|-----|-----|---|---|---------|--| | 7.17,5 | Truck
Unloading | HUMAN FACTORS | Improper training | Injury | D | I | 2 | New tracking; initially plus every three years, Training, and PSM | | | | 7.17.6 | Truck
Unloading | HUMAN FACTORS | Could hookup at wrong bulk head | Fill wrong tank/
overflow | С | ir | 4 | Labeled bulkheads; manual valve on tank; SOPs | | | |
7.18 | Truck
Unloading | EXTERNAL EVENTS | Weather related | Fire/ explosion | D | i | 2 | ERP in-place, Annual Drills, Shear w/excess flow valves built-in | | | | 7.18.1 | Truck
Unloading | EXTERNAL EVENTS | Vehicular related | Fire/ explosion | E | i | 4 | Chain link fence Si ballards inplace | | | | 7.19 | Truck
Unloading | SIGNAGE | Improper labeling of valves | | E | i | 4 | Bulkhead, tanks and piping labeled,
Warning signs and placards posted
on tanks and fence | | | | 7.19.1 | Truck
Unloading | SIGNAGE | Smoking too close | Fire/ explosion | E | i | 4 | New tracking; initially plus every
three years, Bulkhead, tanks and
piping labeled, Warning signs and
placards posted on tanks and fence | | | | 7.19.2 | Truck
Unloading | SIGNAGE | Improper labeling of bulkheads | | E | i | 4 | Bulkhead, tanks and piping labeled,
Warning signs and placards posted
on tanks and fence | | | | | | | | ROPANE P | IDI | NIC | | |
 | | | | Propane | INO FLOW/ LESS FLOW | | | | | | |
 | | | 8.1 | Piping | | Excess flow valve shut | Operational | | N/A | | N/A | \perp | | | 8.1.1 | Propane
Piping | NO FLOW/ LESS FLOW | Pump failure | Injury and/ or release | С | IV | 4 | Daily inspections or operation slowdown; MSAs in tank farm | | | | 8.1.2 | Propane
Piping | NO FLOW/ LESS FLOW | Downstream valve
closed (shut off) | Operational | С | IV | 4 | Hydrostats would bleed off portion of gas; internal excess flow valve @ bottom of tank would dose | | | | 8.1.3 | Propane
Piping | NO FLOW/ LESS FLOW | Backcheck valve stuck closed | Operational | | N/A | | Hydrostats would bleed off portion of gas; internal excess flow valve @ bottom of tank would dose | | | | | | REVERSE FLOW | Backcheck valve stuck | Release | _ | | | Manual shutoff valve at bottom of | | | | 8.2 | Propane
Piping
Propane | REVERSE FLOW | open Loading lines switched | Release | C | IV | 4 | tank Labeled bulkheads; manual valve | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | Risk
Rank | | |--------|-------------------|-------------------------|---------------------------------------|---------------------------|---|--------------|------------|---|----------------|---|--------------|---| | | Item | Deviation | | | F | С | R | | | F | C F | 2 | | 8.3 | Propane
Piping | MORE FLOW | Excess flow valve foiled | Release | С | II | 3 | Daily Inspections | | | | | | 8.3.1 | Propane
Piping | MORE FLOW | Pipe break | Release | С | П | 3 | Daily Inspections | | | | | | 8.3.2 | Propane
Piping | MORE FLOW | Pump pressure set too high | Release | D | ı | 2 | Daily readings; gas alarms; Daily
Inspections; Monthly Complete
System Inspections | | | | | | 8.4 | Propane
Piping | TANK RUPTURE | Vehicle impact | Fire/ explosion | E | I | 4 | Chain link fence 8i ballards inplace | | | | | | 8.5 | Propane
Piping | TANK RUPTURE | Fire | Fire/ explosion | С | IV | 4 | Hydrostats would bleed off portion of gas; internal excess flow valve @ bottom of tank would dose | | | | | | 8.5.1 | Propane
Piping | TANK RUPTURE | Sabotage | Fire/ explosion | E | IV | 4 | Chain link fence around tanks -
valves and gashouse locked during
off hours - dusk to dawn lights | | | | | | 8.6 | Propane
Piping | MORE TEMPURATURE | Overfilling tank | Release | D | n | 3 | Admin SOPs, gauges; gas alarms in place | | | | | | 8.7 | Propane
Piping | CONTAMINATION | Debris in line | Valve/ Fitting
Failure | D | i | 2 | Filter screens and Y-strainer in bulkhead | | | | | | 8.7.1 | Propane
Piping | CONTAMINATION • | Wrong material in tank | Operational | | N/A | | Labeled bulkheads; manual valve on tank; SOPs | | | | | | 8.7.2 | Propane
Piping | RELIEF VALVE FAILURE | Debris in line | Valve/ Fitting
Failure | D | i | 2 | Fitter screens and Y-strainer in bulkhead | | | | | | 8.7.3 | Propane
Piping | RELIEF VALVE FAILURE | Valve stuck open | Release | С | n | 3 | Daily Inspections | | | | | | 8.7.4 | Propane
Piping | RELIEF VALVE FAILURE | Valve stuck shut | Release | С | II | 3 | Daily Inspections | | | | | | 8.8 | Propane
Piping | INSTRUMENTATION | Fill gauges | Release | D | i | 2 | Daily readings; gas alarms; Daily
Inspections; Monthly Complete
System Inspections | | | | | | 8.8.1 | Propane
Piping | INSTRUMENTATION | Temperature
gauges | Release | D | i | 2 | Daily readings; gas alarms; Daily
Inspections; Monthly Complete
System Inspections | | | | | | 8.8.2 | Propane
Piping | INSTRUMENTATION | Pressure gauges | Release | С | II | 3 | Daily readings; gas alarms; Daily
Inspections; Monthly Complete
System Inspections | | | | | | 8.9 | Propane
Piping | CORROSION/
EROSION | Tank and/ or piping not
maintained | Release | E | m | 1 4 | Part of monthly audit Cleaned and
painted every other year, Daily
Inspections; Monthly Complete
System Inspections; SOPs | | | | | | 8.10 | Propane
Piping | IGNITION | Sparks from vehicle | Fire/ explosion | Ε | i | 4 | Chain link fence 8i road barricaded when unloading | | | | | | 8.10.1 | Propane
Piping | IGNITION | Sparks from static discharge | Fire/ explosion | D | i | 2 | Training; Grounding; SOPs | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | | Risk
Rank | | Existing
Controls | Recommendation | | Risk
Rank | | |--------|-------------------|-------------------------|--|---|-----|--------------|---|--|----------------|---|--------------|---| | | Item | Deviation | | | F | С | R | | | F | C R | | | 8.10.2 | Propane
Piping | IGNITION | Electrical sparks | Fire/ explosion | D | I | 2 | Training; Grounding; SOPs; and PSM | | | | | | 8.11 | Propane
Piping | UNPLANNED SHUTDOWN | Weather-related or power outage | Release or
shutdown of
system | | N/A | | Tank valves are shut off at end of
each shift; Develop SOP for re-
start. Shear w/excess flow valves
built-in | | | | | | 8.12 | Propane
Piping | HUMAN FACTORS | Sparks from static electricity | Fire/ explosion | D | ı | 2 | Training; Grounding; SOPs | | | | | | 8.13 | Propane
Piping | SIGNAGE | Incorrect labeling of tanks | | E | I | 4 | Bulkhead, tanks and piping labeled,
Warning signs and placards posted
on tanks and fence | | | | | | | | | | GASHOL | JSE | | | | | | | _ | 9.1 | Gashouse | NO FLOW | Malfunction in electric solenoid valves | Pump could fail if volume is too low | | IV | 4 | Slowdown in operations | | | | | | 9.1.1 | Gashouse | NO FLOW | | | | | | | | | _ | - | | | | | Malfunction in service valve inside gashouse | Pump could fail if volume is too low | | IV | 4 | Slowdown in operations | | | | | | 9.1.2 | Gashouse | NO FLOW/ LESS FLOW | Valve closed from gashouse back to tank | Pressure buildup
could blow
hydrostat | С | III | 4 | Manual shut-off valve at tank | | | | _ | | 9.2 | Gashouse | REVERSE FLOW | Wrong return line
hooked up | Operational | | N/A | | Labeled bulkheads; manual V3lve on tank; SOPs | | | | | | 9.2.1 | Gashouse | REVERSE FLOW | Pump failure | | С | IV | 4 | Daily inspections or operation slowdown; MSAs in tank farm | | | | | | 9.2.2 | Gashouse | REVERSE FLOW | Outside release | Release | С | Ш | 4 | ERP in-piace, Emergency Stop
Button and Excess flow valves | | | | | | 9.3 | Gashouse | MORE FLOW | Pump malilinction | Release | С | IV | 4 | Daily inspections or operation slowdown; MSAs in tank farm | | | | | | 9.4 | Gashouse | LOSS OF CONTAINMENT | Hose failure | Release | С | Ш | 4 | Set off MSA gas-detection alarm;
solenoid valves would shut off
stopping flow | | | | | | 9.4.2 | Gashouse | LOSS OF CONTAINMENT | Valve/ Seal failure | Release | С | III | 4 | Set off MSA gas-detection alarm;
solenoid valves would shut off
stopping flow | | | | | | 9.4.3 | Gashouse | LOSS OF CONTAINMENT | Improper gashead
alignment | Release | С | Ш | 4 | Set off MSA gas-detection alarm;
solenoid valves would shut off
stopping flow | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | Risk
Rank | | | Existing
Controls | Recommendation | Risk
Rank | | | |--------|-----------------|-------------------------|--|---------------------------|--------------|-----|-----|--|----------------|--------------|---|---| | | | 2012101 | | | F | С | R | | | F | С | R | | 9.4.4 | Gashouse | LOSS OF CONTAINMENT | Booster failure | Release | С | 111 | 1 4 | Set off MSA gas-detection alarm;
solenoid valves would shut off
stopping flow 8i operational
slowdown | | | | | | 9.5 | Gashouse | CONTAMINATION | Debris in line | Valve/ Fitting
Failure | D | - 1 | 2 | Filter screens and Y-strainer in bulkhead | | | | | | 9.5.2 | Gashouse | CONTAMINATION | Wrong gas being used | Operational | | N/A | | Labeled bulkheads; manual valve on tank; SOPs | | | | | | 9.6 | Gashouse | RELIEF VALVE FAILURE | Debris in line | Valve/ Fitting
Failure | D | - 1 | 2 | Filter screens and Y-stralner in bulkhead | | | | | | 9.6.1 | Gashouse | RELIEF VALVE FAILURE | Valve stuck open | Release | С | | 3 | Daily Inspections | | | | | | 9.6.2 | Gashouse | RELIEF VALVE FAILURE | Valve stuck shut | Release | С | II | 3 | Daily Inspections | | | | | | 9.7 | Gashouse | INSTRUMENTATION | Pressure gauge
malfunction | Release | D | I | 2 | Daily readings; gas alarms; Daily
Inspections; Monthly
Complete
System Inspections | | | | | | 9.7.1 | Gashouse | INSTRUMENTATION | LEL sensor malfunction | Fire/ explosion | С | II | 3 | Daily checklist; tanks checked three
times, PSM in-place and being
revised and updated | | | | | | 9.8 | Gashouse | CORROSION/
EROSION | Tank and/ or piping not
maintained | Release | С | Ш | 3 | Part of monthly audit Cleaned and painted every other year, Daily Inspections; Monthly Complete System Inspections; SOPs | | | | | | 9.9 | Gashouse | IGNITION | Sparks from vehicle | Fire/ explosion | E | I | 4 | Chain link fence & road barricaded when unloading | | | | | | 9.9.1 | Gashouse | IGNITION | Sparks from static discharge | Fire/ explosion | D | I | 2 | Training; Grounding; SOPs | | | | | | 9.9.2 | Gashouse | IGNITION | Electrical sparks | Fire/ explosion | D | - 1 | 2 | Training; Grounding; SOPs; and PSM | | | | | | 9.10 | Gashouse | SAFETY | Improper dothing | Injury | D | I | 2 | New tracking; initially plus every three years, Training, and PSM | | | | | | 9.10.1 | Gashouse | SAFETY | Improper electrical
shutdown | Release, Fire,
Injury | D | ı | 2 | Chain link fence 8i road
barricaded when unloading, '
Training; Grounding; SOPs; and
PSM | | | | | | 9.11 | Gashouse | STARTUP | Improper adjustment
on gashead (metering
cylinder) | Release | С | 111 | 1 4 | Set off MSA gas-detection alarm;
solenoid valves would shut off
stopping flow | | | | | | 9.11.1 | Gashouse | STARTUP | Wrong gas used | Operational | | N/A | | Labeled bulkheads; manual valve on tank; SOPs | | | | | | 9.12 | Gashouse | SHUTDOWN | Valves not closed | Release | С | II | 3 | Daily Inspections | | | | | | 9.12.1 | Gashouse | SHUTDOWN | Power fluctuations or improper shutdown | Release, Rre,
Injury | D | ı | 2 | Chain link farce & road barricaded
when unloading, Training;
Grounding; SOPs; and PSM | | | | | | Item | Equip./
Item | Guideword/
Deviation | Cause | Consequence | Risk
Rank | | | Existing
Controls | Recommendation | Risk
Rank | | |--------|-----------------|-------------------------|------------------------------|------------------------------|--------------|-----|---|---|----------------|--------------|-----| | | | | | | F | С | R | | | F | C R | | 9.12.2 | Gashouse | SHUTDOWN | Hydraulic failure | Operational | | N/A | | Slowdown in production | | | | | 9.13 | Gashouse | HUMAN FACTORS | Sparks from static discharge | Fire/ explosion | D | I | 2 | Training; Grounding; SOPs | | | | | 9.13.1 | Gashouse | HUMAN FACTORS | Electrical sparks | Fire/ explosion | D | I | 2 | Training; Grounding; SOPs; and PSM | | | | | 9.13.2 | Gashouse | HUMAN FACTORS | Improper tools | Fire/ explosion | D | ı | 2 | Training; Grounding; SOPs; and PSM | | | | | 9.13.3 | Gashouse | HUMAN FACTORS | Improper training | Injury | D | I | 2 | New tracking; initially plus every three years, Training, and PSM | | | | | 9.14 | Gashouse | EXTERNAL EVENTS | Weather related | Fire/ explosion | D | ı | 2 | ERP in-place, Annual Drills, Shear
w/excess flow valves built-in | | | | | 9.15 | Gashouse | SIGNAGE | Improper labeling of valves | | E | I | 4 | Bulkhead, tanks and piping labeled,
Warning signs and placards posted
on tanks and fence | | | | | 9.15.1 | Gashouse | SIGNAGE | Smoking too dose | Fire/ explosion | D | I | 2 | New tracking; initially plus every
three years, Bulkhead, tanks and
piping labeled, Warning signs and
placards posted on tanks and fence | | | | | 9.16 | Gashouse | VENTILATION | Insuffident
ventilation | Could allow vapor
buildup | С | Ш | 4 | LEL sensors; alarm sounds in ventilation units when flow changes | | | |